Mse computer science

14P/208/4

Ouestion	Booklet	No
Smootion.		

		AT- I-	. 60.4	1 41		3:3-4- 1		
		(10 0	е пиеа	up by tr	ie cano	alaate b	y biue/ bi	lack ball-point pen)
Roll No.								
Roll No. (Write the d	ligits in	words)				,		
Serial No. o	of OMR	Answei	r Sheet	***********				
Day and Da	ate							(Signature of Invigilator)

INSTRUCTIONS TO CANDIDATES

(Use only blue/black ball-point pen in the space above and on both sides of the Answer Sheet)

- 1. Within 10 minutes of the issue of the Question Booklet, check the Question Booklet to ensure that it contains all the pages in correct sequence and that no page/question is missing. In case of faulty Question Booklet bring it to the notice of the Superintendent/Invigilators immediately to obtain a fresh Question Booklet.
- 2. Do not bring any loose paper, written or blank, inside the Examination Hall except the Admit Card without its envelope.
- 3. A separate Answer Sheet is given. It should not be folded or mutilated. A second Answer Sheet shall not be provided. Only the Answer Sheet will be evaluated.
- 4. Write your Roll Number and Serial Number of the Answer Sheet by pen in the space provided above.
- 5. On the front page of the Answer Sheet, write by pen your Roll Number in the space provided at the top, and by darkening the circles at the bottom. Also, wherever applicable, write the Question Booklet Number and the Set Number in appropriate places.
- No overwriting is allowed in the entries of Roll No., Question Booklet No. and Set No. (if any) on OMR sheet and also Roll No. and OMR Sheet No. on the Question Booklet.
- 7. Any change in the aforesaid entries is to be verified by the invigilator, otherwise it will be taken as unfair means.
- 8. Each question in this Booklet is followed by four alternative answers. For each question, you are to record the correct option on the Answer Sheet by darkening the appropriate circle in the corresponding row of the Answer Sheet, by ball-point pen as mentioned in the guidelines given on the first page of the Answer Sheet.
- For each question, darken only one circle on the Answer Sheet. If you darken more than one circle or darken a circle partially, the answer will be treated as incorrect.
- 10. Note that the answer once filled in ink cannot be changed. If you do not wish to attempt a question, leave all the circles in the corresponding row blank (such question will be awarded zero mark).
- 11. For rough work, use the inner back page of the title cover and the blank page at the end of this Booklet.
- 12. Deposit only the OMR Answer Sheet at the end of the Test.
- 13. You are not permitted to leave the Examination Hall until the end of the Test.
- 14. If a candidate attempts to use any form of unfair means, he/she shall be liable to such punishment as the University may determine and impose on him/her.

[उपर्युक्त निर्देश हिन्दी में अन्तिम आवरण-पृष्ठ पर दिये गए हैं]

No. of Printed Pages: 28+2

No. of Questions/प्रश्नों की संख्वा : 150

Time/समय : 2 Hours/धण्टे

Full Marks/पूर्णोक : 450

85

Note:

(1) Attempt as many questions as you can. Each question carries 3 marks. One mark will be deducted for each incorrect answer. Zero mark will be awarded for each unattempted question.

अधिकाधिक प्रश्नों को हल करने का प्रयत्स करें। प्रत्येक प्रश्न 3 अंक का है। प्रत्येक गलत उत्तर के लिए एक अंक काटा जाएगा। प्रत्येक अनुत्तरित प्रश्न का प्राप्तांक शून्य होगा।

(2) If more than one alternative answers seem to be approximate to the correct answer, choose the closest one.

यदि एकाधिक वैकल्पिक उत्तर सही उत्तर के निकट प्रतीत हों, तो निकटतम सही उत्तर दें।

1. What is the bit storage capacity of a ROM with a 512' 4-organization?

(1) 2049

(2) 2048

(3) 2047

(4) 2046

2. Associative memory is sometimes called as

(1) virtual memory

(2) cache memory

(3) main memory

(4) content addressable memory

(P.T.O.)

3.	DMA interface unit eliminates the need to use	CPU registers to transfer data from
	(1) MAR to MBR (2) M	BR to MAR
	(3) I/O units to memory (4) m	emory to I/O units
4.	Suppose that a bus has 16 data lines and require data. The bandwidth of this bus would be 2 meg was reduced to 125 nsec and the number of c same, what would be bandwidth of the bus?	abytes/sec. If the cycle time of the bus
	(1) 1 megabyte/sec (2) 4	megabytes/sec
	(3) 8 megabytes/sec (4) 2	megabytes/sec
5.	In 'C', when a function is recursively called, a	l automatic variables
	(1) are initialized during each execution of the	function
	(2) are retained from the last execution	5.
	(3) are maintained in a stack	
	(4) are retained from the first execution	***
6.	In 'C' programming, if an array is used as a funct	ion argument, the array is passed
	(1) by value	*
2	(2) by reference	설
	(3) None of these as array cannot be used as	a function argument
	(4) call by name	STATE THAT STATE S
_		
7.	(where y	is a bitwise XOR operator).
	(1) 00000111 (2) 10000010 (3) 10	100000 (4) 11001000
(173)	· 2	

	(1) 1		(2) no chang	ge ·	
	(3) 0	*	(4) high imp	edance	
9,	In object-oriente	ed programming, adve	antages of inherit	ance include	
	(1) providing a	useful conceptual fra	mework	×2	
•	(2) avoiding rev	riting of code	,	a a	
	(3) facilitating of	lass libraries		Į.	(5)
	(4) All of these	·		5 2	23
10.	int x =	lowing statements : 22, y = 15; > y } ? (x + y) : (x - y);	".	is a	
	What will be	the value of x after ex	ecuting these stat	tements?	
	(1) 22		(2) 37		
S	(3) 7		(4) Error. Ca	nnot be executed	
11.	If 73 (in base-x n values of x and	umber system) is equ y are	al to 54 (in base-y	number system), the possib	ole
	(1) 8, 16	(2) 10, 12	(3) 9, 13	(4) 8, 11	
1 2.	The for loop for (i = 0; i < printf (* %d)	5			
	(1) 0101010101	(2) 0111111111	(3) 00000000	00 (4) 1111111111	
(173)		9 ×	3 .	(P.T.0	O.)
				3 •	Vi.

8. For JK flipflop J=0, K=1, the output after clock pulse will be

	<i>3</i> .	
13.	A liaising in the context of programmis (1) multiple variables having the same	1/2
	(2) multiple variables having the same	
	(3) multiple variables having the same	e identifies
	(4) multiple uses of the same variable	• ·
14.	Consider the following statements: int x = 6, y = 8, z, w; y = x ++;	190 91
	z = + + x;	•
iù.	The value of x, y, z by calculating t	he above expressions are
	(1) $y=8$, $z=8$, $x=6$	(2) $y = 6$, $x = 8$, $z = 8$
	(3) $y = 9$, $z = 7$, $x = 8$	(4) $y = 7$, $x = 8$, $z = 7$
15.	The use of macro in the place of fund	ctions
	(1) reduces execution time	(2) reduces code size
	(3) increases execution time	(4) increases code size
16.	If n has the value 3, then the statement	ent a[++n]=n++
	(1) assigns 4 to a[5]	(2) assigns 4 to a[3]
	(3) assigns 4 to a[4]	(4) produces unpredictable results
17.	Consider for loop in a 'C' program. If	the condition is missing
	(1) it is assumed to be present and t	aken to be false
	(2) it is assumed to be present and t	aken to be true
	(3) it result in a syntax error	

(4) execution will be terminated abruptly

18.	Which of the following file organization is most efficient for a file with a high degree of file activity?
	(1) Sequential (2) ISAM (3) VSAM (4) B-tree index
19.	Analysis which determines the meaning of a statement once its grammatical structure becomes known is termed as
	(1) semantic analysis (2) syntax analysis
	(3) regular analysis (4) general analysis
20.	A partial ordered relation is transitive, reflexive and
	(1) antisymmetric (2) bisymmetric
	(3) antireflexive (4) asymmetric
21.	If B is a Boolean algebra, then which of the following is true?
*	(1) B is a finite but not complemented lattice
	(2) B is a finite, complemented and distributive lattice
	(3) B is a finite, distributive but not complemented lattice
	(4) B is not distributive lattice
22.	Graphics for Word Processor is
	(1) peripheral (2) clip art (3) highlight (4) execute
23.	Why are headers and footers used in document?
	(1) To enhance the overall appearance of the document
	(2) To mark the starting and ending of a page
	(3) To make large document more readable
	(4) To allow page headers and footers to appear on document when it is printed
173)	5 (P.T.O.)

24.	Which data structure allows deleting data elements from front and inserting at rear?
	(1) Stacks (2) Queues (3) Deques (4) Binary search tree
25.	The depth of a complete binary tree is given by
	(1) $D_n = n \log_2 n$ (2) $D_n = n \log_2 n + 1$
	(3) $D_n = \log_2 n$ (4) $D_n = \log_2 n + 1$
26.	When representing any algebraic expression \boldsymbol{E} which uses only binary operations in 2-tree,
	(1) the variable in E will appear as external nodes and operations in internal nodes
	(2) the operations in E will appear as external nodes and variables in internal nodes
	(3) the variables and operations in E will appear only in internal nodes
	(4) the variables and operations in E will appear only in external nodes
27.	A binary tree can easily be converted into 2-tree
	(1) by replacing each empty sub tree by a new internal node
	(2) by inserting an internal nodes for non-empty node
	(3) by inserting an external nodes for non-empty node
	(4) by replacing each empty sub tree by a new external node
28.	When converting binary tree into extended binary tree, all the original nodes in binar tree are
	(1) internal nodes on extended tree (2) external nodes on extended tree
	(3) vanished on extended tree (4) internal nodes
(173)	6

29.	The post order traversal	of a binary tree is l	DEBFCA. Find out th	ne pre order traversal
	(1) ABFCDE (2)	ADBFEC ((3) ABDECF	(4) ABDCEF
30.	Which of the following	sorting algorithm	is of divide-and-con	quer type?
	(1) Bubble sort	(2) Insertion sort	
(*)	(3) Quick sort		(4) All of the above	150
31.	An algorithm that calls	itself directly or i	ndirectly is known	as
	(1) sub algorithm	. (2) recursion	gr
	(3) polish notation	(4) traversal algoriti	hm
32.	In a binary tree, certain nodes higher in the tree			
	(1) leaf (2)	branch (3) path	(4) thread
33.	The in order traversal of	of tree will yield a	sorted listing of ele	ements of tree in
	(1) binary trees	(2) binary search tr	ces
	(3) heaps	. (4) threaded tree	
34.	In a heap tree			
	(1) values in a node is g sub tree	reater than every	value in left sub tree	e and smaller than right
	(2) values in a node is	greater than ever	y value in children	of it
	(3) both of above condi	tion applies	:• :	
	(4) values in a node is	less than every v	alue in children of	it
(173)	20 20	7		(P.T.O.)

35.	In a graph if $e = [u, v]$, then u and v as	re call	led '
	(1) endpoints of e	(2)	adjacent nodes
	(3) neighbours	(4)	All of the above
36.	A connected graph T without any cycle	es is	called
	(1) a tree graph	(2)	free tree
	(3) a tree	(4)	All of the above
			T .
37.	In a graph if $e=(u, v)$ means		
	(1) u is adjacent to v but v is not adj	jacent	to u
	(2) e begins at u and ends at v		•
	(3) u is processor and v is successor		•
	(4) Both (2) and (3)		
38.	If every node u in G is adjacent to every	ery ot	her node ν in G , A graph is said to be
	(1) isolated	(2)	complete
	(3) finite	(4)	strongly connected
,	•	40	
39.	Stack is useful for implementing	(8)	
	(1) radix sort	(2)	breadth first search
	(3) recursion	(4)	depth first search
			300
(173)	•	8	

40.	A B C is a set of attributes. The functional dependency is as follows
0.0	$AB \rightarrow B$
	AC → C
98	$C \to B$
	(1) is in 1NF (2) is in 2NF
	(3) is in 3NF (4) is in BCNF
41.	In mapping of ERD to DFD
	(1) entities in ERD should correspond to an existing entity/store in DFD
	(2) entity in DFD is converted to attributes of an entity in ERD
	(3) relations in ERD has 1 to 1 correspondence to processes in DFD
M.	(4) relationships in ERD has 1 to 1 correspondence to flows in DFD
42.	A dominant entity is the entity
	(i) on the N side in a 1 : N relationship
	(2) on the 1 side in a 1: N relationship
	(3) on either side in a 1 : 1 relationship
	(4) nothing to do with 1: 1 or 1: N relationship
43.	Three tier architecture contains ——— layers.
	(1) presentation (2) application
	(3) database (4) All of the above
44.	Tables derived from the ERD
	(1) are totally unnormalised (2) are always in 1NF
27	(3) can be further denormalised (4) may have multi-valued attributes
173)	9 (P.T.O.)

45.	An instance of relational schema R (A, B, C) has distinct values of A including Null values. Which one of the following is true?		
	(1) A is a candidate key (2) A	is not a candidate key	
154	(3) A is a primary key (4) E	Both (1) and (3)	
46.	The concept of locking can be used to solve t	the problem of	
	(1) lost update (2) u	incommitted dependency	
	(3) inconsistent data (4) A	ill of the above	
47.	A data model is a collection of conceptual too	ols for describing	
	(1) data and data relationships		
	(2) data semantics and consistency constrain	ts	
	(3) data, data relationship, data semantics ar	nd consistency constraints	
	(4) Both (1) and (2)		
48.	The result of the UNION operation between R	1 and R2 is a relation that includes	
	(1) all the tuples of R1		
2	(2) all the tuples of R2		
	(3) all the tuples of R1 and R2	e	
AF.	(4) all the tuples of R1 and R2 which have o	ommon columns	
49.	Redundancy is dangerous as it is a potential	threat to data ——.	
	(1) integrity (2) or	onsistency	
	(3) sufficiency (4) B	oth (1) and (2)	
(173)	10	tes	

50.	What are the potential problems whe	en a DBMS executes multiple transactions
	(1) The lost update problem	(2) The dirty read problem
	(3) The unrepeatable read problem	(4) All of the above
51.	In Boolean expression A+BC equals	
	(1) $(A+B)(A+C)$	(2) $\{A'+B\}(A'+C)$
	(3) $(A+B)(A'+C)$	(4) (A+B)C
52.	All of the following are examples of rea	al security and privacy risks, except
	(1) hackers (2) span	(3) viruses (4) identity theft
53.	Technology no longer protected by copyr	ight, available to everyone, is considered to be
	(1) proprietary	(2) open
	(3) experimental	(4) in the public domain
54.	A goal of data mining includes which	of the following ?
	(1) To explain some observed event or	condition
	(2) To confirm that data exists	
	(3) To analyze data for expected relati	onships
	(4) To create a new data warehouse	
55.	Data independence means	
	(1) data is defined separately and not	included in programs
	(2) programs are not dependent on th	e physical attributes of data
	(3) programs are not dependent on th	e logical attributes of data
	(4) Both (2) and (3)	· ·
(173)	1	(P.T.O.)

56.	Whe	en data changes in multiple lists and	i all	ll lists are not updated, this causes
	(1)	data redundancy	(2)	information overload
	(3)	duplicate data	(4)	data inconsistency
57.	The	purpose of the primary key in a da	taba	pase is to
20	(1)	unlock the database		at the second se
	(2)	provide a map of the data		
	(3)	uniquely identify a record		
21	(4)	establish constraints on database of	pera	ations
58.	The		ac	computer program are likely to be fetched
	(1)	the hard disk	(2)) cache memory
	(3)	RAM	(4)) registers
59.	Ver	ification of a login name and passwo	ord i	is known as
	(1)	configuration	(2)) accessibility
	(3)	authentication	(4)) logging in
60.	RS	A is		
	{1}	symmetric cryptosystem	(2)) asymmetric cryptosystem
	(3)	block cypher	(4)) digital signature
61.	The	altering of data so that it is not us	able	le unless the changes are undone is
	(1)	biometries (2) compression	(3)	encryption (4) ergonomics
173)		12		

(P.T.O.)

62.	Register is a			
	(1) set of capacitors used to registe	er input instructions in a digital computer		
• *	(2) set of paper tapes and cards put in a file			
	(3) temporary storage unit within th	e CPU having dedicated or general purpose use		
	(4) part of the auxiliary memory			
63.	Which one of the following is not a	broadband communication medium?		
	(1) Microwave	(2) Fibre optic cable		
	(3) Twisted pair	(4) Coaxial cable		
64.	In which type of switching all the dat	agrams of a message follow the same channel?		
	(1) Circuit-switching	(2) Datagram packet switching		
٠	(3) Virtual circuit packet switching	(4) Message switching		
65.	When you purchase a product over	a mobile phone, the transaction is called		
	(1) web commerce	(2) e-commerce		
*	(3) m-commerce	(4) mobile purchases		
66.	A Pixel is			
	(1) a computer program that draw	e picture		
	(2) a picture stored in secondary	memory		
	(3) the smallest resolvable part of	a picture		
	(4) All of the above	•		
		i i		

13

67.	The memory location address are	limited to
	(1) 00000 to 9ffff(16)	(2) 00001 to 9ffff(16)
	(3) 00010 to 9ffff(16)	(4) 10000 to 9ffff(16)
68.	The contents of information are	stored in
	(1) memory data register	(2) memory address registe
	(3) memory access register	(4) memory arithmetic regi
69.	A proxy server is used for which	of the following?
	(1) To provide security against u	nauthorized users
	(2) To process client requests for	web pages
×	(3) To process client requests for	database access
	(4) To provide TCP/IP	€ so
70.	Which of the following are charac	cteristics of testable software?
	(1) Observability	(2) Simplicity
	(3) Stability	(4) All of the above
71.	A characteristic of a file server is	which of the following?
	(1) Manages file operations and i	s shared on a network
	(2) Manages file operations and i	
	(3) Acts as fat client and is share	
	(4) Acts as fat client and is limit	ed to one PC
	-	ş

72.	Queue can be used to implement		*
of .	(1) radix sort	(2)	quick sort
	(3) recursion	(4)	depth first search
73.	The member of edges in a regular grap	h of	degree d and n vertices is
	(1) maximum of n, d	(2)	n+d
-	(3) nd	(4)	nd/2
74.	Heap allocation is required for language	cs	
•	(1) that supports recursion	(2)	that supports dynamic data structure
	(3) that use dynamic scope rules	(4)	All of the above
75.	The maximum number of comparisons (assume each item is a 4 digit decimal		ded to sort 7 items using radix sort is
	(1) 280 (2) 40	(3)	47 (4) 38
76.	A graph with n vertices will definitely number of edges are	have	a parallel edge or self loop of the total
	(1) more than n	(2)	more than $n+1$
	(3) more than $(n+1)/2$	(4)	more than $n(n-1)/2$
77.	If h is any hashing function and is used $n \le m$, the expected number of collision		hash n keys into a table of size m , where volving a particular key x is
	(1) less than 1	(2)	less than n
	(3) less than m	(4)	less than $n/2$
(173)	15	5	, (P.T.O.)

78.	The minimum num	ber of edges in a co	nnected cycle graph	on n vertices is
	(1) n-1	(2) n	(3) $n+1$	(4) n/2
79 .	In a binary tree, the two children is	number of terminal	or leaf nodes is 10.7	The number of nodes with
	(1) 9	(2) 11	(3) 15	(4) 20
80.	A circular list can	be used to represen	t	
	(1) a stack	-	(2) a queue	
	(3) B-tree		(4) Both (1) and (2)
81.	The smallest eleme	ent of an Array's ind	ex is called its	
	(1) lower bound	(2) .upper bound	(3) range	(4) extraction
82.	Which amongst the	following cannot be a	balance factor of an	y node of an AVL tree?
	(1) 1	(2) 0	(3) 2	(4) -1
83.	Which of the following operations is performed more efficiently by doubly linked list than by singly linked list?			
	(1) Deleting a nod	e whose location is	given	, 6
	(2) Searching of a	n unsorted list for a	given item	
	(3) Inserting a new	v node after node wi	hose location is give	n
	(4) Traversing the	list to process each	node	=
84.	Search tables used	by compilers for eff	icient searching gen	erally use
	(1) hash tables		(2) linear lists of	records
	(3) binary search	tables	(4) binary search	trees
(173)		16		

85.	5. Which of the following sort method is stab	le?
8	(1) Straight insertion sort (2)	Binary insertion sort
	(3) Shell sort (4)	Heap sort
86.	6. One can determine whether a binary tree is a	binary search tree by traversing it in
	(1) preorder (2)	inorder
	(3) postorder (4)	any of the three orders
87.	The search technique for searching a store space is	ed file that requires increased amount of
	(1) indexed sequential search (2)	interpolation search
	(3) sequential search (4)	tree search
88, •	Which of the following is essential for converte efficiently?	ing an infix expression to the post fix form
	(1) An operator stack	
	(2) An operand stack	*
	(3) An operand stack and an operator stac	k
	(4) A parse tree	
89.	 In —— the difference between the height of tree, for each node, is almost one. 	of the left sub tree and height of the right
	(1) binary search tree (2)	AVL tree
w.	(3) complete tree (4)	threaded binary tree
90.	. Number of possible binary trees with 3 noc	les is
	(I) 12 (2) 13 (3)	14 (4) 15
(173)	17	(P.T.O.)

91.	A complete full binary tree with 10 leav	/es
-	(1) cannot have more than 19 nodes	(2) has exactly 19 nodes
	(3) has exactly 17 nodes	(4) cannot have more than 17 nodes
92.	In a linked list	
	(1) each link contains a pointer to the	next link
	(2) an array of pointers point to the li	nks
	(3) each link contains data or pointer	to data
	(4) Both (1) and (3)	
93.	An adjacency matrix representation of	graph cannot contain information of
	(1) nodes	(2) edges
	(3) direction of edge	(4) parallel edges
94,	Part of program where the shared memorindivisibly, is called	ory is accessed and which should be executed
	(1) semaphores	(2) directory
	(3) critical section	(4) mutual exclusion
95.	What is the initial value of the semaphorenter their critical section?	ere to allow only one of the many processes to
	(1) 0 (2) 1	(3) 2 (4) 3
96.	The principle of locality of reference just	stifies the use of
	(1) virtual memory	(2) interrupts
	(3) secondary memory	(4) cache memory
(173)	18	

97.	Four necessary conditions for deadlock to exist are mutual exclusion, no-preemption, circular wait and
	(1) hold and wait (2) multiprogramming
	(3) race around condition (4) buffer overflow
98.	Memory utilization factor shall be computed as follows
	(1) memory in use/allocated memory
	(2) memory in use/total memory connected
¥	(3) memory allocated/free existing memory
ř	(4) memory committed/total memory available
99.	In which of the storage placement strategies a program is placed in the smallest available hole in the main memory?
	(1) Best fit (2) First fit (3) Worst fit (4) Buddy
100.	A critical section is a program segment
•	(1) which should run in a certain specified amount of time
	(2) which avoids deadlocks
	(3) where shared resources are accessed
•	(4) which must be enclosed by a pair of semaphore operations, P and V
101.	An operating system contains 3 user processes each requiring 2 units of resource R. The minimum number of units of R such that no deadlocks will ever arise is
	(1) 4 (2) 3 (3) 5 (4) 6
• *	
(173)	19 (P.T.O.)
	, , , , , , , , , , , , , , , , , , , ,

102.	Page fault frequency in an operating system is reduced when the
	(1) processes tend to the I/O-bound
	(2) size of pages is reduced
	(3) processes tend to be CPU-bound
	(4) locality of reference is applicable to the process
103.	Concurrent processes are processes that
	(1) do not overlap in time
	(2) overlap in time
	(3) are executed by a processor at the same time
0	(4) not executed by processor
104.	Fragmentation is
	(1) dividing the secondary memory into equal sized fragments
	(2) dividing the main memory into equal sized fragments
	(3) fragments of memory words used in a page
	(4) fragments of memory words unused in a page
105.	In a paged memory systems, if the page size is increased, then the internal fragmentation generally
	(1) becomes less (2) becomes more
	(3) remains constant (4) discard
(173)	20

106.		Round Robin CPU scheduling, as t und time	he tim	e quantum is increased, the average turn
	(1)	increases	(2)	decreases
	(3)	remains constant	(4)	varies irregularly
107.		ich of the following scheduling potem?	olicy is	well suited for a time-shared operating
	(1)	Shortest job first	(2)	Round Robin
	(3)	First-come-first-serve	(4)	Elevator
108.	Thr	ashing		· · · · · · · · · · · · · · · · · · ·
	(1)	reduces page I/O		
	(2)	decreases the degree of multipro	gramn	ning
	(3)	implies excessive page I/O		*
	(4)	improves the system performance	e	• 8
109.	A s	cheduler which selects processes	from	secondary storage device is called
	(1)	short-term scheduler	(2	long-term scheduler
·	(3)	medium term scheduler	(4	process scheduler
110.	Wh	ich of the following is not a stane	dard s	ynchronous communication protocol?
	(1)	PAS (2) DDCMP	(3) HDLC (4) SDLC
111.	The to	e interactive transmission of data v	within	a time sharing system may be best suited
	(1)	simplex lines	(2) half-duplex lines
	(3)	full duplex lines	(4	biflex lines
(173)		- 1965	21	(P.T.O.)

112.	Which of the following is an example of a bounded medium?		
	(1) Coaxial cable (2) Wave guide		
	(3) Fiber optic cable (4) All of the above		
113.	What is the main difference between synchronous and asynchronous transmission?		
	(1) The bandwidth required is different		
	(2) The pulse height is different		
	(3) The clocking is derived from the data in synchronous transmission		
	(4) The clocking is mixed with data in asynchronous transmission		
114.	One important characteristic of LAN is		
	(1) parallel transmission		
	(2) low cost access for low bandwidth channels		
	(3) unlimited expansion		
	(4) application independent interfaces		
115.	Which of the following is possible in a token passing bus network?		
	(1) Unlimited number of stations (2) Unlimited distance		
	(3) In-service expansion (4) Multiple time-division-channels		
116.	The X.25 standard specifies a		
	(1) technique for dial access (2) data bit rate		
	(3) DTE/DCE interface (4) technique for start-stop data		
(173)	22		

117.	How many OSI layers are covered in the X.25 standard?						
\$1	(1) Three	(2) Four	(3)	Two	(4)	Seven	
118.	Layer one of the O	SI model is		-			
	(1) physical layer	368 A	(2)	link layer			
	(3) transport layer		(4)	network layer		ix.	Si
119.	In OSI network are	hitecture, the re	outing is	performed by			
	(1) data link layer		(2)	network layer			
	(3) transport layer		(4)	session layer		(A)	
120.	The basic ethernet	design does not	provide		-		•
	(1) access control						
	(2) addressing						
	(3) automatic retra	nsmission of a	message	c	5		
	(4) multiple time-d	ivision-channels				**	
121.	The topology with I	nighest reliabilit	y is.		1.0		
	(1) bus topology		(2)	star topology			
*	(3) ring topology		(4)	mesh topology			
122.	Start and stop bits	are used in sc	rial comm	nunication for			
	(1) error detection	a a	(2)	error correction	1		
W.	(3) synchronization	1	(4)	slowing down	he o	communication	on
(173)	© @		23				(P.T.O.)

123,	End-to-end connectivity is provided from host-to-host in				
	(1) the network layer	(2) the transport layer			
	(3) the session layer	(4) application layer			
		To go and a second seco			
124.	BSC is a				
	(1) character oriented protocol	(2) half-duplex protocol			
	(3) full-duplex protocol	(4) Both (1) and (2)			
125.	Which of the following are non-po	olling systems?			
	(1) TDMA	(2) Stop and Wait			
	(3) Xon/Xoff	(4) Both (1) and (3)			
126.	The number of elements in the po	ower set of the set { { }, 2, 3 } } is			
	(1) 2 (2) 4	(3) 8 (4) 3			
127.	Let $f(x+y) = f(x) f(y)$, for all x, y	y, if $f(5) = 2$ and $f'(0) = 3$, then $f'(5)$ is equal to	o		
	(i) 1 (2) 5	(3) 6 (4) -1	22		
128.	An object that groups together a se is known as	et of operations that have no relations to each ot	her		
	(1) entity abstraction	(2) action abstraction			
	(3) virtual machine abstraction	(4) coincidențal abstraction			
(173)		24			

129.	In the set of integers, a relation R is defined as a Rb, if and only if b = lat This relation is				
	(1) reflexive	(2)	irreflexive		
	(3) symmetric	(4)	anti-symmetric		
130.	For a function to be invertible, it has to	a be	nation		
	(1) one-one	(2)	onto .		
io.	(3) both one-one and onto	(4)	one to many		
131.	Trapezoidal rule gives the exact solution	n wh	en the curve is		
	(1) concave towards the base line	(2)	convex towards the base line		
	(3) a straight line	(4)	parabola		
132.	A group has 11 elements. The number	of p	roper sub-group it can have is		
	(1) 0 (2) 11	(3)	5 (4) 4		
133.	What is the total number of equivalent rel	lation	ns that can be defined on the set { 1, 2, 3}?		
	(1) 8 (2) 64	(3)	5 (4) 3		
134.	Two isomorphic graphs must have				
	(1) the same number of vertices	(2)	the same number of edges		
	(3) an equal number of vertices	(4)	All of the above		
135.	A graph consisting of only isolated n ve	rtice	s is		
	(1) 1-chromatic	(2)	2-chromatic		
	(3) 3-chromatic	(4)	n-chromatic ·		
173)	25		(P.T.O.)		
			F €		

136.	If B is a circuit matrix of a graph with k components, the rank of the incident matrix of the graph is			f the incident matrix		
*	(1) $n-k$	(2) e-n-k	(3)	e-n+k	(4)	e+n-k
137.	The determinant of matrix is	matrix has 720 term	18 (ir	the unsimplifie	d for	m). The order of the
	(1) 5	(2) 6	(3)	7	(4)	8
138.	For what value of	c, will the vector i+c	j be	orthogonal to 2	i – j	?
	(1) 0	(2) 1	(3)	2	(4)	` 3
139.	Let $f(x)$ represent smallest integer gre for any x ?	the largest integer le eater than or equal to	:88 ti	nan or equal to Which of the follo	x. Le win	et $g(x)$ represent the gremark will be true
i	(1) $g(x) = f(x) + 1$	5	(2)	f(x) = g(x)		
	(3) f(-x) = -g(x)	91	(4)	All of the abov	c	*
140.	Which of the follow operation?	ing logical operations	alm	ost resembles an	aritl	nmetic multiplication
	(1) OR	(2) AND	(3)	NOR	(4)	XOR
141.	If $a-b < n$ and $b-a$	c< m, then a-c is		5 (5)		
	(1) < n + m		(2)	< maximum of	m, n	
	(3) < minimum of	m, n	(4)	< mn	2	120
(173)		, 26	i			,

142.	Let A, B, C inde	pendent events with t least one of these t	proba	bilities 0·8,	0.5,	0.3	The	probabil	ity of
	(1) 0.3	(2) 0.93	(3)	0.12		(4)	0.07		
143.	A polynomial $p(1) = p(3)$ p(2) = p(4)	— 000 = 000	wing .		¥ 3				
	The minimum d	egree of such polyno	mial is						
	(1) 1	(2) 2	(3)	3		(4)	4		
144.	What is the relat	ion R on the set $A = \{ a \}$	a, b, c} if	wheneyer o	aR bea	nd b	Rc, tl	nen aRc?	I v
2	(1) Transitive	(2) Equivalence	(3)	Reflexive		(4)	Symr	netric	0
145.	According to pri	nciple of logic, an in	plicatio	n and its	contra	posi	tive n	ust be	
	(1) both true or	false	(2)	both true		•			
•	(3) both false		(4)	both true	and fa	alse			
146.	A memory bus i	s mainly used for co	mmuni	cation betw	een				
	(1) processor ar	nd memory	.(2)	processor	and I	(O (i e vice	9	
	(3) I/O devices	and memory	(4)	inpuț devi	ce and	i ou	tput	device	
147.	The idea of cach	e memory is based					03		٠
	(1) on the prope	erty of locality of refe	erence		*				
	(2) on the heur	istic 90-10 rule							
	(3) on the fact	that references gener	ally ten	d to cluste	т				
	(4) All of the al	ove							
173)		10	27		¥		(4)	(F	P.T.O.)

148.	The register which	contains the ir	struction that is to b	be executed is known a	38
	(1) index register		(2) instruction	register	
	(3) memory addre	ess register	(4) memory da	ata register	
149.	If memory access uses a 10 ns mer		cache and 110 ns wi	thout it, then the ratio	(cache
	(1) 93%	(2) 90%	(3) 88%	(4) 87%	
150.	The average time contents is called	The state of the s	ach a storage location	n in memory and obt	ain it
	(1) seek time		(2) turnaroun	d time	
	(3) access time		(4) transfer ti	me	
•	ë □ • •		6		

अभ्यर्थियों के लिए निर्देश

(इस पुस्तिका के प्रथम आवरण-पृष्ठ पर तथा उत्तर-पत्र के दोनों पृष्ठों पर केवल नीली या काली बाल-प्वाइंट पेन से ही लिखें)

- 1. प्रश्न पुस्तिका मिलने के 10 मिनट के अन्दर ही देख लें कि प्रश्नपत्र में सभी पृष्ठ मौजूद हैं और कोई प्रश्न छूटा नहीं है। पुस्तिका दोषयुक्त पाये जाने पर इसकी सूचना तत्काल कक्ष-निरीक्षक को देकर सम्पूर्ण प्रश्नपत्र की दूसरी पुस्तिका प्राप्त कर लें।
- 2. परीक्षा भवन में लिफाफा रहित प्रवेश-पत्र के अतिरिक्त, लिखा या सादा कोई भी खुला कागज साथ में न लायें।
- 3. उत्तर-पत्र अलग से दिया गया है। इसे न तो मोड़ें और न ही विकृत करें। दूसरा उत्तर-पत्र नहीं दिया जायेगा, केवल उत्तर-पत्र का ही मूल्यांकन किया जायेगा।
- 4. अपना *अनुक्रमांक तथा उत्तर-पत्र का क्रमांक प्रथम आवरण-पृष्ठ पर पेन* से निर्धारित स्थान पर लिखें।
- 5. उत्तर-पत्र के प्रथम पृष्ठ पर पेन से अपना अनुक्रमांक निर्धारित स्थान पर लिखें तथा नीचे दिये वृतों को गाढ़ा कर दें। जहाँ-जहाँ आवश्यक हो वहाँ प्रश्न-पुस्तिका का क्रमांक तथा सेट का नम्बर उचित स्थानों पर लिखें।
- 6. ओ॰ एम॰ आर॰ पत्र पर अनुक्रमांक संख्या, प्रश्न-पुस्तिका संख्या व सेट संख्या (यदि कोई हो) तथा प्रश्न-पुस्तिका पर अनुक्रमांक सं॰ और ओ॰ एम॰ आर॰ पत्र सं॰ की प्रविष्टियों में उपरिलेखन की अनुभति नहीं है।
- 7. उपर्युक्त प्रविष्टियों में कोई भी परिवर्तन कक्ष निरोक्षक द्वारा प्रमाणित होना चाहिये अन्यथा यह एक अनुचित साधन का प्रयोग माना जायेगा।
- 8. प्रश्न-पुस्तिका में प्रत्येक प्रश्न के चार वैकल्पिक उत्तर दिये गये हैं। प्रत्येक प्रश्न के वैकल्पिक उत्तर के लिये आपको उत्तर पत्र की सम्बन्धित पंक्ति के सामने दिये गये वृत्त को उत्तर-पत्र के प्रथम पृष्ठ पर दिये गये निर्देशों के अनुसार ऐन से गाड़ा करना है।
- 9. प्रत्येक प्रश्न के उत्तर के लिये केवल एक ही वृत्त को गाढ़ा करें। एक से आधिक वृत्तों को गाढ़ा करने पर अथवा एक वृत्त को अपूर्ण भरने पर वह उत्तर गलत माना जायेगा।
- 10. ध्यान दें कि एक बार स्थाही द्वारा ऑकित उत्तर बदला नहीं जा सकता है। यदि आप किसी प्रश्न का उत्तर नहीं देना चाहते हैं, तो सम्बन्धित पंक्ति के सामने दिये गये सभी वृत्तों को खाली छोड़ दें। ऐसे प्रश्नों पर शून्य अंक दिये जायेंगे।
- 11. रफ़ कार्य के लिये प्रश्न-पुस्तिका के मुखपृष्ठ के अन्दर वाले पृष्ठ तथा अंतिम पृष्ठ का प्रयोग करें।
- 12. परीक्षा के उपरान्त केवल *ओ०एम०आर० उत्तर-पत्र* परीक्षा भवन में जमा कर दें।
- 13. परीक्षा समाप्त होने से पहले परीक्षा भवन से बाहर जाने की अनुमति नहीं होगी।
- 14. यदि कोई अभ्यर्थी परीक्षा में अनुचित साधनों का प्रयोग करता है, तो वह विश्वविद्यालय द्वारा निर्धारित दंड का/की, भागी होगा/होगी।